Deprecated: Creation of dynamic property db::$querynum is deprecated in /www/wwwroot/midising-pro.com/inc/func.php on line 1413

Deprecated: Creation of dynamic property db::$database is deprecated in /www/wwwroot/midising-pro.com/inc/func.php on line 1414

Deprecated: Creation of dynamic property db::$Stmt is deprecated in /www/wwwroot/midising-pro.com/inc/func.php on line 1453

Deprecated: Creation of dynamic property db::$Sql is deprecated in /www/wwwroot/midising-pro.com/inc/func.php on line 1454
【干货】火电厂超低排放烟气在线监测技术探讨_案例_火狐首页-火狐首页地址 
好品质、更有性价比
全国咨询热线:0314-4219918

【干货】火电厂超低排放烟气在线监测技术探讨

来源:火狐首页    发布时间:2024-12-11 23:38:51 人气:1

  火电厂实施超低排放改造后,对污染物在线监测的精确性提出了更加高的要求。本文通过对比几种应用于二氧化硫、氮氧化物和烟尘的典型监测技术,提出了适用于超低排放改造的烟气在线监测系统优化配置方案,为火电厂超低排放改造中烟气在线监测系统的选型提供参考。

  火电厂实施超低排放改造后,对污染物在线监测的精确性提出了更加高的要求。本文通过对比几种应用于二氧化硫、氮氧化物和烟尘的典型监测技术,提出了适用于超低排放改造的

  在线监测系统优化配置方案,为火电厂超低排放改造中烟气在线监测系统的选型提供参考。1引言

  自《煤电节能减排升级与改造行动计划(2014-2020年)》(发改能源[2014]2093号)发布后,国家出台了一系列文件、措施和鼓励性政策支持火电厂实施超低排放改造,并在东部地区进行了试点。经过试点后,“十三五”期间将在全国范围内实施火电厂超低排放改造,改造后烟气排放限值执行标准为烟尘 10mg/m3、二氧化硫35 mg/m3、氮氧化物50 mg/m3。

  火电厂实施超低排放改造后,烟气污染物浓度大幅度降低,烟气水分含量增大,烟气特性发生了较大改变,对污染物在线监测的精确性提出了更加高的要求。因此,在现阶段总结超低排放试点电厂烟气在线监测系统(CEMS)的运作情况,分析对比各种烟气监测技术的性能特点,对于“十三五”火电厂超低排放改造中CEMS的选型具有积极作用。

  “十一五”和“十二五”期间,国内在脱硫和脱硝上应用最为广泛的是非分散红外吸收法监测技术,有少部分紫外吸收技术。这类技术是基于朗伯-比尔 (Lambert-Beer)吸收定律的光谱吸收技术,其基本分析原理是:当光通过待测气体时,气体分子会吸收特定波长的光,可通过测定光被介质吸收的辐射强度计算出气体浓度。即:

  紫外荧光法基于分子发光技术,在一定条件下,SO2气体分子吸收波长为190~230nm紫外线能量成为激发态分子,激发态的SO2分子不稳定,瞬间返回基态,发射出波长为330 nm的特征荧光。在浓度较低时,特征荧光的强度与SO2浓度成线性关系,即可通过检验测试荧光强度计算SO2浓度。

  化学发光法是在一定条件下,NO与过量的O3发生反应,产生激发态的NO2。激发态NO2返回基态时,会产生波长为900nm的近红外荧光。在浓度较低情况下,NO与O3充分反应发出的光强度与NO浓度成线性关系,即可通过检验测试化学发光强度计算NO浓度。

  光透射法技术基于朗伯-比尔定律,即光穿过含尘烟气时透过率与烟尘浓度呈指数下降关系。在实际应用中有单光程和双光程两种类型的仪器,光透射法的准确性受颗粒物粒径分布影响较大,且灵敏度不高,通常用于烟尘浓度高(大于300mg/m3)、烟道直径大且烟气湿度低的工况。

  光照射在烟尘上时会被烟尘吸收和散射,散射光偏离光入射的路径,散射光强度与烟尘粒径和入射光波长有关,光散射法就是采用测量散射光强度来监测烟尘浓度的。在实际应用中有前向散射、后向散射和边向散射三种类型。该技术灵敏度较高,能够测量低至0.1mg/m3的烟尘浓度,最低量程可达到0-5mg/m3,适用于烟尘浓度低、烟道直径小的情况。但该技术同样容易受水汽影响,不适宜烟气湿度高的工况。

  所有烟尘颗粒均带有电荷,颗粒物接触或摩擦时将产生电荷交换,电荷法就是用电绝缘传感探针测量探头和附近气流或直接与探头碰撞的颗粒物之间的电荷交换来测量烟尘浓度的。该技术除受烟尘粒径变化、组分变化和烟气湿度影响外,还受烟气流速影响,大多数都用在布袋除尘的泄漏检测和报警等定性测量,少在CEMS中应用 。

  射线具有一定穿透力,当它穿过一定厚度的吸收物质时,其强度随吸收物质厚度的增加逐渐减弱,经过测量穿过物质前后的射线强度,即可得出吸收物质的浓度。

  该技术基于抽取式测量方式,不受烟尘粒径分布、折射系数、组分变化、烟气湿度等影响,可用于烟尘浓度低、烟气湿度大的工况。但抽取式测量属于点测量,不适合烟气流速变化大、烟尘浓度分层的场所。

  基于非分散红外/紫外吸收法技术的CEMS系统多数采用直抽法取样,为防止系统堵塞和水分对测量的干扰,需要对烟气进行除尘和除水处理。预处理装置的效果直接影响CMES的整体性能,通常以处理后的烟气露点作为重要指标来判定预处理的性能。

  在实际应用中,“过滤+冷凝”的预处理方式比较广泛。其中烟气过滤除尘技术较为成熟,常用的有金属滤芯、陶瓷烧结滤芯和膜式过滤器。在采样探头处初步过滤,样气进分析仪前深度过滤,至少过滤掉0.5-1微克粒径以上的颗粒物。

  烟气冷凝除水技术较为常用的有压缩机冷凝与半导体冷凝,可将烟气露点干燥至5℃。新兴技术中有高分子膜式渗透除水技术,采用高分子聚合亲水材料,具有高选择性除水性能,不改变烟气中SO2和NOX污染物因子成份,可将烟气露点干燥至-5℃以下。

  国内火电厂烟气在线监测产品众多,本文结合各种产品的运作情况,参考了拥有该种技术典型品牌产品的说明书,对超低排放较为关注的量程、精度等重要指标参数作对比。其中最小量程指的是最小物理量程,而非软件迁移的量程。

  根据《固定污染源烟气(SO2、NOX、颗粒物)排放连续监测系统技术方面的要求及检测的新方法》(HJ/T76),按超低排放限值计算,SO2和NOX量程应不大于 175mg/m3和250mg/m3。 从表1和表2能够准确的看出,传统非分散红外吸收法分析仪SO2和NOX的最小量程分别为286mg/m3和308mg/m3,不能够满足超低排放污染物在线监测的要求。

  从表1和表2还可看出,紫外荧光法和化学发光法测SO2和NOX的最小量程可达到0.1mg/m3,检出下限极低。紫外荧光法和化学发光法是分子发光气体分析技术,属于ppb级的气体分析技术。该种技术以分子发光作为检验测试手段,具有灵敏度较高、选择性好、试样量少、操作简单便捷等优点,已在生物医学、药学以及环境科学等方面大范围的应用,也是EPA(美国环境保护署)认证中明确推荐的SO2和NOX浓度监测技术。该技术采用抽取稀释法(常用稀释比为100:1)对烟气进行预处理,避免了烟气水分、烟尘对测量的影响,在超低排放烟气监测上具有较好的适应性。

  在火电厂超低排放改造中,烟尘浓度一般要达到10mg/m3以下。尤其以湿式除尘改造为主要技术路线的烟气中水分含量较大,给烟尘的准确监测带来挑战。在实际应用中一般是将烟气等速抽取,经升温加热使水分雾化不出现液滴,再通过光散射等低浓度测量办法来进行测量;另一种是将烟气等速抽取,将加热干燥的空气与其按一定比例混合稀释,从而降低烟气中的水分含量,再通过光散射等低浓度测量方法做测量,结合混合气体的稀释比计算出烟尘浓度。这种方式选用低浓度测量原理,优化了烟气采样和预处理,有效解决目前超低排放改造中高湿低浓度烟尘在线监测的问题,在湿式除尘后已有广泛应用。

  火电厂实施超低放改造后,烟气污染物浓度大幅度降低,在线监测的适应性取决于系统的检出下限,而CEMS 的检出下限受分析仪本体和烟气预处理装置两部分制约。在实际应用的烟气预处理中,直接抽取+冷干法占70%,均采用冷凝除水技术。该技术在冷凝过程中,冷凝水会吸收携带部分SO2和NOX,以致在超低浓度工况下的监测数据严重失真甚至无检验测试的数据,不能够满足HJ/T76标准的技术方面的要求。表4为不同水分含量下不同预处理方式对SO2测量影响的实验对比表。

  (1)超低排放改造实施后,进出口烟气特性差异较大,烟气监测对CEMS的系统配置提出了更高、更具体的要求,建议在可研或技术规范书里明确各测点不同污染物对烟气取样方式、预处理、分析仪的测量原理、量程、检出下限等主要参数和选型的具体要求。

  (2)在超低排放改造中,脱硫脱硝入口CEMS仍可采用常规的预处理装置和非分散红外技术测量SO2和NOX浓度,除尘器前可采用光透射法测量烟尘浓度。

  (3)在脱硫脱硝出口特别是湿式除尘后,SO2和NOX的测量优先采用紫外荧光法和化学发光法技术;若采用直抽法非分散紫外吸收/差分法分析仪时,应同时配备除水性能更优越的膜渗透烟气预处理技术。

  (4)在脱硫出口特别是湿式除尘后,优先采用抽取高温光散射法测量烟尘浓度。